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Abstract

Time sharing between cluster resources in a grid is a major
issue in cluster and grid integration. Classical grid archi-
tecture involves a higher-level scheduler which submits
non-overlapping jobs to the independent batch schedulers
of each cluster of the grid. The sequentiality induced by
this approach does not fit with the expected number of
users and job heterogeneity of grids. Time sharing tech-
niques address this issue by allowing simultaneous exe-
cutions of many applications on the same resources.

Co-scheduling and gang scheduling are the two best
known techniques for time sharing cluster resources. Co-
scheduling relies on the operating system of each node to
schedule the processes of every application. Gang sched-
uling ensures that the same application is scheduled on all
nodes simultaneously. Previous work has proven that co-
scheduling techniques outperform gang scheduling when
physical memory is not exhausted.

In this paper, we introduce a new hybrid sharing tech-
nique providing checkpoint-based explicit memory man-
agement. It consists in co-scheduling parallel applications
within a set, until the memory capacity of the node is
reached, and using gang scheduling related techniques to
switch from one set to another one. We compare experi-
mentally the merits of the three solutions (co-scheduling,
gang scheduling, and hybrid scheduling) in the context of
out-of-core computing, which is likely to occur in the grid
context, where many users share the same resources.
Additionally, we address the problem of heterogeneous
applications by comparing hybrid scheduling to an opti-
mized version relying on paired scheduling. The experi-
ments show that the hybrid solution is as efficient as the
co-scheduling technique when the physical memory is not

exhausted, can benefit from the paired scheduling optimi-
zation technique when applications are heterogeneous,
and is more efficient than gang scheduling and co-sched-
uling when physical memory is exhausted.
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interface, time sharing, grid, gang scheduling, co-scheduling

1 Introduction

Two of the most fundamental principles of grids are (1)
the capacity to establish virtual organizations spanning
over several administration domains in order to extend
the number of resources accessible by users and (2) the
coordination of these resources in order to cooperate in
solving user problems. From these two principles eventu-
ally arises the need for efficient and fair resource sharing
mechanisms.

The first principle inevitably tends to increase the pres-
sure on the system mechanisms implementing the resource
sharing between users. In the general situation, the resources
belong to institutions and are already used by some of their
members. Thus, building virtual organizations on top of
already used resources increases the number of potential
users for these resources, leading to an increased require-
ment to share these resources fairly among the users. In
large systems within high performance computing centers,
queues of jobs are already quite long. It is not uncommon
to wait days before having large jobs done. If nothing is
done in grids associating tens of such sites, the waiting time
would certainly evolve from days to weeks, which in some
circumstances will not be acceptable for users. Another fair-
ness issue concerns the capacity to establish several level
of priority among parallel jobs on the grid. High-priority
jobs should be able to preempt the resource of a low-pri-
ority parallel application under execution.

The second principle, as examined in the light of the first,
implies the use of efficient coordination mechanisms
ensuring (a) parallel application performance close to that
obtained in a dedicated system and (b) limiting strictly the
waste of computing resources by providing rapid parallel
applications context switch. In this paper, we restrict our
investigation domain to users running message passing
interface (MPI) applications on clusters shared within a
grid virtual organization. We focus on the following sce-
nario. Users submit their MPI jobs to a meta-scheduler
(from a portal), which schedules them on dynamically
selected clusters. Any MPI execution may span over sev-
eral clusters or remain within a single cluster. In the first
case, an efficient coordination mechanism should sched-
ule simultaneously all the components involved in each
MPI execution. The efficiency in fulfilling criteria (a) and
(b) depends on the synchronization mechanism coordinat-
ing the scheduling of the MPI subparts over all the clus-
ters involved in the execution and on the speed of context
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switch between the MPI executions on each cluster. In the
second case, clusters are not synchronized and the efficiency
of the grid only depends on the capability of each cluster
management system to meet the criteria (a) and (b).

Fairness and performance are in principle contradictory.
Reaching top performance on parallel execution involves
dedicated usage of the cluster resources. The fewer times
the operating system interrupts the application execution, the
higher the performance. Usually, fairness relies on context
switch mechanisms enabling resource sharing between
users. Context switching adds an overhead on the total
application execution time. The more context switches
are experienced during an execution, the more the appli-
cation is slowed down.

Sharing fairly the cluster resources between multiple
users may be examined in two cases: (1) when the concur-
rent executions of all users fit in the memory of the cluster
nodes and (2) conversely when disk storage should be used
in addition to the memory in the cluster nodes to store all
concurrent executions. We call these two cases in-core
and out-of-core context switching, respectively.

The two principles lead to three main consequences.
(1) A fast mechanism for switching the context of MPI exe-
cution on a cluster is the cornerstone to meet efficiency
criteria. (2) Because fairness and performance are contra-
dictory objectives, we should consider a metric represent-
ing a trade-off between them. For the sake of simplicity,
in this paper, we consider applications with the same exe-
cution time. (3) In a grid with many users, it is likely that
out-of-core context switching will be the general case. Thus,
in this paper, we essentially focus on this context.

In this paper we study several MPI application context
switching techniques, trying to discover which one has
the lowest impact on application performance. We demon-
strate that the best technique for out-of-core context switch-
ing is a hybrid (two-level) one mixing checkpoint based
context switching of sets of MPI executions and uncoordi-
nated scheduling (co-scheduling) of MPI executions within
each set. We also demonstrate that hybrid scheduling can
benefit from the optimizations to gang and co-scheduling
presented in previous works (paired scheduling).

In Section 2 we present the related works. In Section 3
we present the different scheduling approaches compared
in this paper. In Section 4 we present the general frame-
work used to compare the different scheduling techniques.
In Section 5 we present the experimental results and in
Section 6 we conclude and sum up what we have learned
from the experiences.

2 Related Work

There are several main techniques to implement parallel
application context switching in practice. One of the
most used is batch scheduling, i.e. queuing the jobs sub-

mitted by the different users. In the general case, after
being elected for execution, parallel jobs are scheduled
sequentially (one after the other). Thus, only one parallel
execution runs on the cluster at a given time. Examples
of existing implementations of batch schedulers are PBS
(Henderson 1995), LSF, Condor, etc. The main drawback
of the batch scheduling approach is its lack of fairness
between users submitting heterogeneous jobs. An appli-
cation that needs a large number of nodes but for a short
period may have to wait until all longer jobs running on
a fewer number of nodes terminate before being allowed
to run.

In this paper we focus on another family of approaches
which lets the operating system schedule the processes of
several parallel executions launched concurrently, accord-
ing to their priorities. These techniques are called gang
scheduling and co-scheduling, depending on the schedul-
ing coordination of parallel execution processes. There is no
coordination in co-scheduling. In gang scheduling, proc-
esses of a given application are scheduled simultaneously,
requiring some synchronization mechanism. In these tech-
niques, all concurrent parallel applications reside in the
cluster memory until their completion, generally leading
to a huge demand on the virtual memory system.

Hori et al. (1996, 1998) have proposed one of the first
implementations of gang scheduling, called SCore. SCore
targets clusters and is based on a network preemption pro-
cedure relying on the PM communication library (Tezuka
et al. 1997). The gang scheduling itself is performed using
a UNIX signal mechanism. When an application has to be
unscheduled, all its processes on all nodes receive a SIG-
STOP signal. Thus, when another application is scheduled
by the reception of the SIGCONT signal, it has exclusive
usage of computational power and network resources. How-
ever, the memory is shared between running and stopped
applications. Memory sharing is resolved by the virtual
memory mechanism of the operating system, as inactive
applications may be transferred in swap memory. The gang
scheduling strategy we present in this paper explicitly stores
and reloads stopped processes and does not rely on oper-
ating system swapping mechanism. In our checkpoint-
based scheduling, typically only one execution resides in
memory at a given time, thus limiting the memory sharing
between applications. Another difference compared to
SCore is the network flush algorithm. SCore does not use
the Chandy–Lamport algorithm to flush the network, but
a three-phase synchronization algorithm using the PM
flow-control protocol. The Chandy–Lamport algorithm we
implemented uses only one synchronization phase. Note
that uploading and downloading executions to and from
the memory involves disk operations, which can add a sig-
nificant overhead.

An example of gang scheduling evaluation on LLNL’s
Cray T3D can be found in Feitelson and Jette (1997).
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Parsons and Sevcik (1997) evaluate different schedul-
ing policies using the LSF batch scheduler. All policies
are refinements of gang scheduling techniques, allowing
each application to run solely on the required processors.
Three classes of applications are considered: short (5 min
termination expected time), medium (60 min) and long
running (no limit). They study different policies when an
application with a shorter termination expected time is
queued. They demonstrate that preemption, implemented
with checkpointing techniques, is crucial to obtain good
response time. In this paper we extend the notion of hybrid-
ness, mixing gang scheduling with co-scheduling. The
resulting approach could be adapted to work within a batch
scheduler. The experimental studies concerning this issue
will be presented in a future paper.

Co-scheduling involves launching all applications on
the system resources and letting each node’s operating
system schedule the different jobs. The lack of coordina-
tion for the simultaneous execution of each node’s part of
an application is a major drawback for synchronous oper-
ations, but this approach allows a better overlapping of the
communication of one job with the computation of another
one (we assume that the communications are buffered inde-
pendently of the process scheduling, as in kernel level
protocol stacks). As co-scheduling relies on the operating
system’s memory scheduling, running out-of-core applica-
tions leads to high overhead due to the system swap pol-
icy. Ryu, Pachapurkar, and Fong (2004) introduce different
paging techniques to reduce the number of page faults.

Some studies have compared and mixed gang scheduling
and co-scheduling. Strazdins and Uhlmann (2004) dem-
onstrate experimentally that co-scheduling outperforms
gang scheduling for clusters and in-core running applica-

tions. Our study pushes this result in the case of out-of-
core applications, a major concern for grid systems as the
number of users and tasks expands. Wiseman and Feitel-
son (2003), Lee et al. (1997), and da Silva and Scherson
(2000) consider specific classes of application based on
their communication and I/O characteristics. Thus, they
improve gang scheduling of such known applications by
co-scheduling applications of different classes. In this paper,
we demonstrate that mixing the two techniques provides
the best performance in the out-of-core case, even if the
applications are identical.

3 Three Techniques of Scheduling

We study three different kinds of scheduling for sharing
multiple MPI applications on a single set of nodes. Two of
these, co-scheduling and gang scheduling, were compared
in the context of clusters and using applications with low
memory usage in Strazdins and Uhlmann (2004). These two
techniques were not studied in the context of a large mem-
ory usage, leading to out-of-core computation when many
applications run simultaneously. We propose a new hybrid
method based on the mix of co-scheduling and gang
scheduling. The main idea is to limit the number of con-
current co-scheduled applications using gang scheduling
global time slice and checkpoint related techniques, so that
physical memory would not be exhausted by co-schedul-
ing all applications.

3.1 Co-Scheduling

The first kind of scheduling, called co-scheduling, con-
sists of an uncoordinated approach. Figure 1 presents an

Fig. 1 Typical deployment of co-scheduling.
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example of deployment of the co-scheduling architec-
ture. In this example we suppose that three simultaneous
applications fit in physical memory. The processes of each
application are launched simultaneously on all nodes. On
each node, the local operating system scheduler is in charge
of sharing resources among the processes of different appli-
cations. Thus, processes of an application may not be sched-
uled at the same time on all nodes, which could impact
performances of applications using a tightly synchronized
communication scheme. Moreover, the frequent context
switches between processes may introduce many cache
faults. Nonetheless, this technique requires no specific
implementation, and computational and network resources
may be better used, as in the multithreaded programming
scheme.

3.2 Gang Scheduling

The second approach is called gang scheduling. Figure 2
presents a typical deployment of the gang scheduling archi-
tecture. It consists in synchronizing all the local schedul-
ers so that all processes of a single distributed application
are scheduled simultaneously, while all other applications
are stopped and sleeping. All resources are thus employed
on the execution of a single application, avoiding the wait

for messages from a process not scheduled on another
node. However, no multithread effect is possible as only
one application is running at a time. However, there is no
cache fault, and all physical memory is dedicated to the
currently scheduled application. As discussed in Straz-
dins and Uhlmann (2004), on many applications, the co-
scheduling technique outperforms gang scheduling, as most
applications do not perfectly overlap communications with
computation.

Gang scheduling is implemented in the master sched-
uler of the MPICH-V framework.

3.3 New Hybrid Technique of Time Sharing for 
High Memory Requirement

In this method, we propose to use co-scheduling for in-core
computation, as it has been proved to be more efficient than
gang scheduling. When out-of-core computation would
appear using co-scheduling, we use a gang scheduling
related technique to enforce that only a subset of the appli-
cations is running on the nodes. As the overhead induced
by the applications switch is related to time to store proc-
ess memory on local disk, it is much higher than the node
operating system context switch overhead. As a conse-
quence, time slices have to be much longer. Thus, gang

Fig. 2 Typical deployment of gang scheduling.
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scheduling is mandatory to reach good performance for
any communicating application. Waiting for a message
during the full time slice of an application would lead to
very poor network performance.

Figure 3 presents a typical deployment of the hybrid
architecture. In this example we suppose that physical
memory size allows us to run two co-scheduled applica-
tions simultaneously without inducing out-of-core execu-
tion.

The master scheduler controls the dispatchers and check-
point schedulers of each application, forcing some appli-
cations to be stopped and swapped out of memory, while
some others are restarted. We explain in Section 3.3.2 dif-
ferent methods to swap an application out of memory. For
the set of applications that are running, their processes are
co-scheduled by each node’s operating system.

3.3.1 Network Management for Application Switch-
ing To stop an application, the network status has to be
saved. We use the Chandy–Lamport algorithm to flush the
network before the application is stopped. The checkpoint
scheduler and the communication daemons are designed
to save the network state. The checkpoint scheduler requests
every communication daemon to take a global snapshot

by sending them a tag. On the reception of a tag, a dae-
mon stops the computing process, and then sends the tag
in every communication channel (including the checkpoint
scheduler). When the checkpoint scheduler has received a
tag from every communication daemon, the network flush
is achieved.

3.3.2 Memory Management for Application Switching
3.3.2.1 SIGSTOP/SIGCONT Policy, System Memory
Management In previous implementations of gang sched-
uling, each process of an application is stopped by the
SIGSTOP UNIX signal. In the case of large memory con-
sumption, memory sharing is managed by the operat-
ing system’s swap policy. As running applications were
swapped out to disk during the previous time slice, the
memory pages are reloaded on demand during the execution
(thus swapping out some pages used by stopped applica-
tions). The number of page faults has a major impact on
overall performance. The overhead using this technique is
very unpredictable as it relies on operating system swap-
ping policy. Moreover, relying on the SIGSTOP/SIG-
CONT mechanism would introduce perturbations in our
page fault measurements, as it is difficult to differentiate
out-of-core computation and context switch induced page

Fig. 3 Typical deployment of hybrid scheduling.
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faults. Thus, we prefer to use a checkpoint based tech-
nique, whose overhead is well bounded.

3.3.2.2 Checkpoint Policies, Explicit Memory Man-
agement In our implementation, we use checkpoint/
restart to explicitly manage memory swapping of applica-
tions memory. When a computing process is requested to
be stopped, it performs a checkpoint to the local disk, thus
freeing all memory it uses. The complete memory of the
process to be scheduled in the next time slice is reloaded
from the checkpoint, and thus no page fault occurs during
the time slice. Incremental checkpoint related techniques
may be used to improve checkpoint performances. This
memory management is equivalent to the aggressive pag-
ing out technique described in Ryu, Pachapaurkar, and
Fong (2004).

Many policies may be used to overlap checkpoint, restart,
and computations. Figure 4 presents the three techniques
implemented in the comparison framework. The first
method (called sequential checkpoint/restart) does not
overlap checkpointing and restarting. It avoids loading
the two applications simultaneously in memory at the
expense of serializing checkpoint, restart, and computa-
tion during the context switch.

The second technique (called overlapped checkpoint/
restart) overlaps checkpoint and restart, trying to reduce
context switch cost. It requires more memory as one
application is reloaded before the previous application is

fully flushed out of memory, and induces simultaneous
disk accesses.

The third technique (called predictive restart prefetch)
tries to prefetch restart during the end of the time slice of
the previous application, so that restart is overlapped by
computation of the application to be stopped, and check-
point is overlapped by computation of the next applica-
tion. It has to rely on an oracle, predicting time to restart,
and induces simultaneous memory usage during the end
of the time slice of the application to be stopped.

These three techniques are compared in section 5.2.

3.3.3 Paired Hybrid Scheduling In the context of pure
gang scheduling, Wiseman and Feitelson (2003) prove
that scheduling two applications with very different com-
munication/computation ratios during the same time slice
improves performance greatly. This optimization can be
used in the context of hybrid scheduling of heterogeneous
applications, by building the co-scheduled subset with
consideration to the communication/computation ratio of
the applications, and trying to avoid creating homogene-
ous subsets.

4 Common Framework

In this paper, we focus on comparing and mixing two
scheduling methods for MPI application time sharing.
The first is based on the ability to stop and restart a set of

Fig. 4 Policy for checkpointing a job and restarting the next scheduled one on the same node.
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MPI applications so that memory used by these applications
is available to another set of applications. At the end of a
time slice, a set of applications is dumped on disk, and
another set of applications is loaded from a previous
checkpoint and run during the next time slice. The second
method is based on running all MPI applications simulta-
neously on the same set of nodes. This method relies on
the operating system scheduler to perform time sharing
and is called co-scheduling.

The MPICH-V framework offers both stop and restart
capable and standard MPI implementations. Its main focus
is comparison of different types of fault-tolerant protocols
for MPI. Deviating from this main purpose, we developed
two non-fault-tolerant protocols. One includes a distrib-
uted checkpoint facility based on the Chandy–Lamport
algorithm (Vcl; Bouteiller et al. 2003; Lemarinier et al.
2004), and another implements basic MPI communication
without checkpoint capabilities (Vdummy). Using such an
implementation is mandatory to perform a fair compari-
son: as the two implementations share the same framework,
any performance difference is related to the scheduling
itself, and not to implementation optimizations. Moreo-
ver, we compared the MPICH-V framework to the refer-
ence implementation MPICH-P4 in Lemarinier et al.
(2004). Figure 5 compares the architectures, while Figure 7
shows the ping-pong performance comparison between
the MPICH-V framework and the reference implementa-
tion, and validates the checkpoint enabled MPICH–Vcl
version performance compared to the standard MPICH–
Vdummy version.

MPICH-V is based on the MPICH library (Gropp et al.
1996), which builds a full MPI library from a channel. A
channel implements the basic communication routines for
a specific hardware or for new communication protocols.

MPICH-V consists of a set of runtime components and a
channel (ch_v) for the MPICH library.

The different protocols are implemented in the MPICH-
V framework at the same level of the software hierarchy,
between the MPI high-level protocol management layer
(managing global operations, point to point protocols,
etc.) and the low-level network transport layer. Among
the other benefits, this allows us to keep unmodified the
MPICH implementation of point-to-point and global
operations, as well as complex concepts such as topolo-
gies and communication contexts. A potential drawback
of this approach might be the necessity to implement a
specific driver for all types of network interface (NIC).
However, several NIC vendors provide low-level, high
performance (zero copy) generic socket interfaces such as
Socket-GM for Myrinet, SCI-Socket for SCI, and IPoIB
for Infiniband. MPICH-V protocols typically sit on top of
these low-level drivers. So, this is one of the most rele-
vant layers for implementing new MPI capabilities if
criteria such as design simplicity, high performance, het-
erogeneous network migration, and portability are to be
considered.

MPICH-V provides all the components necessary to
stop and restart MPI applications. Some of these have
been slightly modified to focus on the scheduling of MPI
applications, while some have been added, specifically to
manage sets of applications.

4.1 Dispatcher

The dispatcher of the MPICH-V environment has two main
purposes: (1) to launch the whole runtime environment
(encompassing the computing nodes and the auxiliary
“special” nodes) on the pool of machines used for the
execution, and (2) to monitor this execution, by detecting
node disconnection, and then stop the execution.

The dispatcher is in charge of a single MPI applica-
tion. If more than one application is running at a time on
a cluster, each is controlled by its own dispatcher.

4.2 Driver

The driver is the part of the MPICH-V framework linked
with the MPI application. It implements the channel inter-
face of MPICH. Our implementation only provides syn-
chronous functions (bsend, breceive, probe, initialize, and
finalize). The asynchronism of communication is delayed
to the daemon.

4.3 Communication Daemon

The core of the communication daemon is a select loop: it
manages one socket for every computing node and one
socket for every specific component. Every send or receive

Fig. 5 Architecture of MPICH-V compared to architec-
ture of MPICH-P4.
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operation is asynchronous. Thus, a communication is not
blocked by another slower one. On the contrary, the com-
munication across the interprocess communication mech-
anism to the MPI process is synchronous and its granularity
is the whole protocol message. The communication daemon
is in charge of all distributed checkpoint mechanisms.

The checkpoint of the daemon uses an explicit serial-
ization of its data and when a checkpoint is requested,
some messages have to be logged on the receiver (consid-
ered as the in-transit messages of the Chandy–Lamport
algorithm).

4.3.1 Generic Communication Daemon Daemons
implement a generic communication layer to provide all
the point-to-point communication routines between the
different types of components involved in the MPICH-V
architecture, independently of the protocols. Checkpoint-
enabled protocols are designed through the implementa-
tion of a set of hooks called in relevant routines of the
generic layer and some specific components (Figure 5).

The collection of all these functions is defined through
a fault tolerance API and each protocol implements this
API. In order to reduce the number of system calls, com-
munications are packed using iovec-related techniques by
the generic communication layer. The different commu-
nication channels are multiplexed using a single thread
and the select() system call. This common implementa-
tion of communications eases the implementation of pro-
tocols and allows a fair comparison between them.

4.4 Checkpoint Scheduler

The checkpoint scheduler requests computation proc-
esses to checkpoint according to a given policy. The pol-
icy is protocol-dependent. In this paper, the checkpoint
scheduler uses a coordinated checkpoint policy driven by
the master scheduler, intended to checkpoint an applica-
tion before it is stopped at the end of a time slice.

4.5 Master Scheduler

The master scheduler is a new component introduced in
the MPICH-V architecture in order to target grid schedul-
ing. The master scheduler coordinates the scheduling of
all the applications on the system. Given a list of applica-
tions to schedule, it first launches the dispatcher and
checkpoint scheduler components of each application.
The application deployment itself is performed by the
dispatcher of this application (figure 6).

The number n of jobs to run simultaneously is given as
a parameter of the master scheduler. The master sched-
uler associates a time slice with each application. When a
scheduled application has been running long enough to
expire its time slice, the master scheduler requests the dis-

patcher and the checkpoint scheduler to stop this application.
When it is stopped, the master scheduler requests another
dispatcher to restart the associated application, and the
time slice for this application begins.

The master scheduler implements various policies for
stopping/restarting applications. It is possible to co-schedule
k applications of a set of n. To perform set context switch-
ing, three checkpoint/restart overlap policies are imple-
mented. These policies are detailed in Section 3.3.2.

5 Performance Evaluation

5.1 Experimental Conditions

Experiments are run on a 32-nodes cluster. Each node is
equipped with an Athlon XP 2800+ processor, running at
2 GHz, 1 GB of main memory (DDR SDRAM), and a 70
GB IDE ATA100 hard drive and a 100 Mbit/s Ethernet
network interface card. Swap space is set to 10 GB. All
nodes are connected by a single fast Ethernet switch.

All these nodes use Linux 2.4.21 as the operating sys-
tem. The tests and benchmarks are compiled with GCC
2.95-5 (with flag -O3) and the PGI Fortran77 compilers.
All tests are run in dedicated mode. Each measurement is
repeated five times and we present a mean of these.

The first experiments are synthetic benchmarks analyzing
the individual performance of the subcomponents. We use
the NetPIPE (Snell, Mikler, and Gustafson 1996) utility
to measure the bandwidth and latency of the MPICH-V
framework. This is a ping-pong test for several message
sizes and small perturbations around these sizes. The sec-
ond set of experiments is the set of kernels and applications
of the Numerical Aerodynamic Simulation (NAS) Paral-
lel Benchmark suite (Bailey et al. 1995), written by the
National Aeronautics and Space Administration (NASA)
Numerical Aerodynamic Simulation NAS research center
to test high performance parallel computers. These bench-
marks cover a large panel of communication schemes:

Fig. 6 Typical deployments of MPICH-V with many
applications.
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each benchmark tests a particular communication scheme,
and communication computation ratio. CG benchmark
presents heavy point-to-point latency driven communica-
tions; BT benchmark presents large point-to-point mes-
sages, and communications overlapped by computation.
Each process of a BT benchmark uses 175 MB of mem-
ory for class C on 25 nodes, 135 MB for class B on nine
nodes, and each process of CG class C on eight nodes uses
157 MB. A node has 1 GB of memory (900 MB of user
space memory). Thus, up to five simultaneous applications
fit in physical memory whatever the application we use.
Moreover, with seven or more simultaneous applications,
swapping is always needed.

As we compare scheduling algorithms in terms of both
performance and fairness, we propose to use the following
trade-off metric to measure performance: the slowdown
between concurrent application set makespan and time to
perform an according number of sequential executions plus
the standard deviation of individual concurrent execution
time over the average concurrent execution time:

.

5.2 Checkpoint/Restart Overlap Scheduling Policy

Figure 8 presents the performance of NAS BT class C
benchmark on 25 nodes for the three application context

switching policies of checkpoint/restart presented in Sec-
tion 3.3.2.2. In Figure 8(a), two concurrent applications
are gang scheduled. In Figure 8, five applications of 10
are run simultaneously, thus filling physical memory.

When physical memory is not exhausted by computing
applications, as expected, the more overlap reached, the
better the performance. Thus, the overlapped checkpoint/
restart method performs better than sequential check-
point/restart, and the predictive restart prefetch method
performs better than the other two. Moreover, it is better
to use a greedy prefetch than an exact one, as the predicted
checkpoint time may vary around the mean value.

When running enough applications to exhaust physi-
cal memory, the overlapping strategies do not perform
as well. The finishing application remains in memory dur-
ing its checkpoint, thus inducing memory swapping for
the restarted applications. Moreover, the restart prefetch
strategy suffers from a dramatic overhead related to the
very intensive memory usage induced by the simultane-
ous execution of applications at the end of their time slice
and applications beginning a new time slice. Concurrent
applications swapping on disk increase the checkpoint time,
while checkpoint and restart accesses on disk decrease
swapping performance. Thus, the more the disk is accessed
simultaneously, the more the overall performance is
decreased. As it sequentializes both disk access and mem-
ory usage, the sequential policy performs better when
physical memory is near to being filled.

Fig. 7 Bandwidth and latency comparison between MPICH-P4, MPICH-Vdummy, and MPICH-Vcl on the Fast-Ether-
net network.
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5.3 Scheduling Techniques Performance 
Comparison

Figure 9 presents the computation time of n simultaneous
BT class C on 25 nodes benchmark. When the memory
used by the concurrent applications fits in-core, the com-
putation throughput increases slightly with the number of
applications. For seven simultaneous applications, the over-
all throughput is decreasing, and for nine simultaneous
applications, the makespan is 20 times the sequential batch
scheduling makespan. Table 1 explains this result, present-
ing the average number of major page faults per minute for
seven and nine simultaneous applications using co-sched-
uling. On the one hand, for seven co-scheduled applica-
tions, only a subset of the applications hits the swap: the
first application does not suffer from any page fault (8.5
page faults per minute), while another suffers from more
than 1245 page faults per minute. On the other hand, for nine
co-scheduled applications, all applications hit the swap
equally (standard deviation is less than 47.1 for an aver-
age of 507.4 page faults per minute). This illustrates the
lack of fairness of the virtual memory management used
in the Linux 2.4.21 kernel when only a small amount of
swap is used. This algorithm achieves good performance

by scheduling more time for the in-core applications, at
the cost of serializing executions. When memory occupa-

Fig. 8 Comparison of checkpoint/restart application context switching policies, using the NAS benchmark BT class
C on 25 nodes on Ethernet performance criteria: (a) two hybrid scheduled BT.C.25, one running at a time (in-core);
(b) 10 hybrid scheduled BT.C.25, five running at a time (near out-of-core).

Fig. 9 Makespan for n simultaneous BT class C 25
nodes using co-scheduling.
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tion leads the size of the page cache table to reach its
lower bound pages_table_low, the virtual memory man-
ager applies a first “gentle” policy, which is the case for
seven simultaneous applications. For nine simultaneous
applications and above, the upper bound pages_table_high
is reached, setting the virtual memory manager in an
“aggressive” (but fair) swapping policy. In this case, all
applications have fair access to physical memory, but per-
formance suffers from a dramatic decrease. Even if these
bounds may be tuned, at some point, the kernel has to
switch to the aggressive policy, in order to ensure availa-
bility and fairness.

Figure 10 presents the computation time of n simulta-
neous NAS benchmarks, using co-scheduling, gang sched-
uling or hybrid scheduling. Hybrid scheduling relies on
the operating system scheduler for executing a set of five
applications simultaneously, in order to occupy all the

physical memory without inducing out-of-core computa-
tion. The sequential checkpoint/restart policy is used to
perform a set of applications context switch. Time slices
are 900 s.

For the CG benchmark (Figure 10(a)), the co-scheduling
method reaches good performance up to using about three
times the physical memory (2800 MB). Comparing to the
BT benchmark results (Figure 9), this shows that the point
of inefficiency of co-scheduling is tightly related to the
pattern of memory accesses. The application often uses
the same pages, reducing the number of page faults. How-
ever, for these two applications, the huge impact on co-
scheduling of the kernel’s aggressive swapping policy is
observed. When co-scheduling is outperformed, gang and
hybrid scheduling techniques reach the same perform-
ance. This shows that there is almost no benefit of co-
scheduling a subset of applications for this benchmark. In

Table 1
Page fault statistics for simultaneous BT class C on 25 nodes.

Number of
applications

Average number of major page faults for all nodes of each application, 
per minutes

Average page 
faults per min

all applications

Standard
deviation

app 0 app 1 app 2 app 3 app 4 app 5 app 6 app 7 app 8

7 8.5 239.5 264.25 951 1145.25 1245.5 1074 704 474.9

9 484.58 405.94 564.78 524.4 510.66 577.26 506.94 481.84 509.4 507.4 47.1

Fig. 10 Makespan for n simultaneous applications using co-scheduling, gang scheduling or hybrid scheduling: (a)
CG class C 8 nodes; (b) BT class B 9 nodes.
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CG, communication prevails, and thus the bandwidth is
divided between co-scheduled applications.

Figure 10(b) focuses on performance comparison
between gang scheduling and hybrid scheduling when co-
scheduling is outperformed due to out-of-core computa-
tion for the BT benchmark. For each time slice, gang
scheduling and hybrid scheduling have to checkpoint and
restart one application. During that time slice, no swap
effect occurs, as the number of applications running simul-
taneously is either one for gang scheduling, or however
many fit in-core for hybrid scheduling. Obviously, the per-
formance is exactly the performance of pure gang sched-
uling compared to pure in-core co-scheduling. Unlike the
CG benchmark, computation prevails in the BT bench-
mark. For this type of application, hybrid scheduling per-
forms 17% better than gang scheduling.

Table 2 compares the relative slowdown of co-schedul-
ing, gang scheduling and hybrid scheduling compared to
ideal (overhead free) sequential batch scheduling. For the
CG benchmark, gang and hybrid scheduling perform
equally to sequential scheduling. Co-scheduling shows a
6–8% performance improvement until we reach out-of-
core computing, where it shows a 30% performance pen-
alty. For the BT benchmark, in-core, co-scheduling and
hybrid scheduling give a 10% improvement compared to
sequential scheduling, while gang scheduling suffers from
a 2% overhead. When out-of-core memory is used, co-
scheduling performance is very poor, and gang-scheduling
suffers from a 7% slowdown. In the same context, hybrid
scheduling produces a 10% improvement compared to
sequential scheduling. For every benchmark, the overall
throughput of hybrid scheduling is equal or up to 10%
better than sequential scheduling.

5.4 Case Study for Heterogeneous Applications

Focusing on the case of heterogeneous sets of applica-
tions, let us consider a total of n applications, where n/2
are communication bound (CG.C.8 in this experiment)
and n/2 are computation bound (BT.B.9). With regard to
available physical memory, up to five of these applica-

tions may be co-scheduled during each time slice. How-
ever, in order to have the same number of computing and
communicating applications, we restricted the subset size
to four in this experiment. On the one hand, for homoge-
neous hybrid scheduling, the construction of each subset
ensures that only four identical applications are running
during each time slice. Thus, half of the time slices are
dedicated to only communicating applications, and half
to computing applications. On the other hand, for paired
hybrid scheduling, all subsets are identical and composed
of two communicating and two computing applications.
Figure 11 presents homogeneous hybrid scheduling com-
pared to paired hybrid scheduling. Whatever the total
number of applications, considering the different com-
munication/computation ratio of applications improves
the hybrid scheduling performance by 2.7%. Compared
to the 17% performance improvement between gang and
hybrid scheduling, this illustrates that most of the com-
munication/computation overlap is due to co-scheduling,
and only a small part is related to heterogeneousness.

6 Conclusion

In this paper, we compare several scheduling techniques
for the grid. Some are well known, such as gang scheduling
(which schedules a whole single application on all nodes
at a given time) and co-scheduling (which schedules all
applications simultaneously on all nodes). We propose a
new scheduling approach, based on the two previous
approaches, which we call hybrid scheduling.

Table 2
Average slowdown using co-scheduling, gang 
scheduling or hybrid scheduling, compared to 
sequential batch scheduling.

Co-sched Gang sched Hybrid sched

CG
in-core 0.92 1.02 0.99

out-of-core 1.3 1.02 0.99

BT
in-core 0.9 1.02 0.90

out-of-core 1.9 1.07 0.90

Fig. 11 Makespan for n simultaneous heterogeneous
applications using homogeneous hybrid scheduling or
paired hybrid scheduling.
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Hybrid scheduling splits the set of applications to
schedule in subsets, co-scheduling the applications of a
same subset and gang scheduling the different subsets.
The main decisive factor is the amount of physical mem-
ory used by all the processes of the same subset. The tech-
nique uses user-mode checkpoints to stop and restart gang
scheduled applications. Using three different policies, we
studied experimentally the merits of overlapping or not
the checkpoint and restart during gang scheduling context
switching.

We conducted a set of experiments using the NAS par-
allel benchmarks. We show that for out-of-core computa-
tion, co-scheduling behaves accordingly to the swap policy
of the operating system, and is eventually hit by very poor
performance. We show that according to the application
computation/communication ratio, hybrid scheduling com-
pares favorably or equally to gang scheduling. We show
that hybrid scheduling can benefit from scheduling simulta-
neously applications with different computation/commu-
nication ratios. Compared to sequential batch scheduling,
hybrid scheduling reaches 10% better or equal throughput
depending on the type of application, and offers a better
fairness.

We plan to improve the master dispatcher, in order to
dynamically adapt the number of applications running con-
currently to the memory occupation of nodes. Another issue
is the gang scheduler context switch efficiency, so we plan
to compare user-space checkpoint techniques to optimized
the kernel swap algorithm in the context of overflowed
physical memory. Finally, we plan to integrate our hybrid
scheduling system into a meta batch scheduling system
for the grid, to compare the fairness, reactivity and perform-
ance of such a system with classical batch scheduling.
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